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Abstract—Development of a touch-sensitive (sensate) skin for

robotic manipulators would provide tactile feedback for fine-

grained dexterous control of robots interacting with objects in

their environments, a capability that has largely been missing

with robotic systems developed to date. A sensate skin for robots

would require integration of hundreds or thousands of minute

force or pressure sensors, each producing a localized response.

Interpretation and extraction of useful information from the

sensate skin presents a key technical challenge. In this paper

we present a technique for analyzing data from tactile sensor

arrays based on K-means clustering. Using a simplified contact

model, the procedure estimates both magnitude and location for

impacts on the sensate skin surface. Furthermore, it robustly

accommodates a variety of sensor array densities by interpolating

across areas of sensor response, providing accurate results even

between sensing elements.

I. INTRODUCTION

In designing a touch-sensitive skin for a robotic manipulator,
we would like to interpret the signals from an array of tactile
sensors embedded within an artificial skin (not including
finger-tips or hand areas). Given that the robotic manipulator
physically interacts with an object, person, another robot, or
itself within its operating environment, based upon sensor
feedback we would like to determine the location of the
contact on the skin resulting from the interaction, and the
force magnitude of the contact. In this paper we present a
new approach for processing data from a tactile sensor matrix
based on K-means clustering.

The paper is organized as follows: Section II provides a
description of the sensor hardware setup, and explains the
problem at hand. Section III describes some of the related
approaches used previously in tactile processing and provides
comparisons to the current approach. Details of the algorithm
are presented in section IV. Section V describes the mathemat-
ics used to convert localized pressure measurements to impact
force and location estimates. Sections VI and VII cover the
simulation results.

II. TARGET HARDWARE

We first provide a brief overview of the intended target
hardware to give context to the design of the algorithm. The
tactile sensor system consists of a sensing matrix with a
polymer compliance layer placed over the matrix supported by
stand-offs sitting over each sensing element. An acrylic sheet

was placed under the sensor setup to provide the backing for
the entire system. Shown in Fig. 1, the sensing matrix, a square
with 5 cm edges, includes 16 individual sensing elements.

Fig. 1. Prototype Hardware Setup of the Tactile Sensor. At the very top is
the compliance layer, the acrylic layer with grid marking. The sensor matrix
sits underneath the compliance layer. The stand-offs provide spacing between
the sensor matrix and the compliance layer.

Each sensing element was a piezoresistive pressure sensor.
The sensor used was the Flexiforce A201-25 pressure sensor
with a rated maximum input of 25 pounds; each sensor was
circular, measuring 9.53 mm in diameter. The sensor output
was resistance as function of the input pressure, where an
increase in input pressure decreased the resistance of the
sensing element (see Fig. 2). Polymer stand-offs were placed
over each sensing element to increase the effective area of the
sensor by channeling the pressure around the sensor onto the
sensing area. The stand-offs also served as protection for the
sensor by absorbing excess strain directed onto the sensor.

The polymer compliance layer covering the sensor matrix
served to distribute an impact load over the surface of the en-
tire sensing matrix, increasing the number of sensing elements
registering the impact. The goal for the processing algorithm
was to determine the presence of impacts, and estimate the
location and magnitude of forces, on the surface.

The hardware setup was the primary motivation when se-
lecting the method of processing. As indicated by the Nyquist-
Shannon sampling theorem, an input signal must be sampled



Fig. 2. The plot shows the factory sensor calibration curve for the A201-
100 pressure sensor as output resistance versus input force. The force was
measured in N.

at twice its maximum frequency to avoid aliasing and to
reconstruct the signal correctly. Seen in Fig. 1, an area 5 cm by
5 cm is being sampled at only 16 discrete points, since the data
transfer bandwidth limited the number of sensing elements. In
addition, the physical size of each pressure sensor also limited
the density of the sensor matrix. These hardware limitations
made traditional signal reconstruction approaches infeasible,
so an unconventional approach based upon K-means was
chosen instead.

III. PREVIOUS WORK

Tactile sensor arrays with a compliance layer have been
extensively studied in the past three decades. The sensor arrays
covered in [1], [2], [3] were significantly smaller; seen in
Fig. 13 of [3], the spacing between each sensing element was
1.5mm, compared to 1 cm in the current hardware setup.

These small area tactile sensors were intended for mounting
on the finger tips of manipulators, and used for the grasping
control [1] [4]. For this purpose, the sensor needed to be
able to distinguish different shape indenter [5]. This was
accomplished primary through indentation modeling of stress
features on the compliance layer. On a larger scale however,
such as the one seen in Fig. 1, the stress feature for a point
or a hemisphere indenter would be indistinguishable.

The main differentiating factor between these approaches
and approach proposed here is the sensor size. The technique
described in this paper is capable of interpolating between the
tactile sensing elements (tactels), and thus produces sub-tactel
resolution responses both spatially and in the overall resolved
impact force.

IV. ALGORITHM DESCRIPTION

K-means is a data partitioning algorithm that sacrifices
accuracy for fast and efficient computation. As described
in [6], the general operation of K-means takes n samples
X = (x1, x2, x3, ..., xn) and finds the set of K partitions
S = (S1, S2, S3, ..., Sk) of the samples X , where each

partition Si is the minimum distance partition
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Here ui is the centroid of Sj .
K-means uses an iterative method for data partitioning;

each iteration consists of two steps, partition assignment and
partition update. During partition assignment, the samples in
X are partitioned amongst the K clusters, obtained from the
previous iteration, by assigning each sample to the partition
whose centroid was closest to that sample.
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With all the samples partitioned, the cluster centroids are
recalculated during partition update to accommodate the new
data samples.
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As an iterative algorithm where the previous partition con-
figuration is used for the current iteration, an initial partition-
ing is needed to begin the partition refinement process. As
suggested in [6], a randomized initial partition could be used
as the starting case; at the start of the algorithm, K random
data samples would be chosen from X to be the initial centroid
locations for the starting partitions.

Applying the K-means partitioning algorithm here, the goal
was to identify the sensor responses with impacts on the sensor
surface. As stated in the hardware description, a polymer com-
pliance layer was placed over the sensor matrix to distribute
the force of any impact on the plate over a wide area; this
stress distribution allowed the impact event to be registered
by multiple sensing elements in the matrix. The pressure
value registered at each sensing element is determined by the
distance between the element and the location of the impact;
sensing elements far away from the impact location register
a smaller pressure. K-means clustering was used to cluster
the sensor responses according to source impacts, thereby
providing a mechanism to calculate total impact force and
location for each contact.

Because the impact force is distributed outward in a circular
fashion from the point of contact, the location of the impact
can be determined as the centroid of the sensors registering the
impact (see Fig. 3). Knowing the location of the impact, the
force of the impact could be calculated as an inverse problem
of the force distribution.

To extend this to the multiple impact scenario, when two
impacts are applied to the sensor surface both impacts will
exert forces radiating outward from each contact point. The
sensor matrix will register the superposition of pressure read-
ings, where each sensing element would return a pressure
reading that is the sum of stresses from both impacts (see Fig.
4). So in order to determine the original impacts, the readings



Fig. 3. Illustration of the centroid concept. An impact on the sensor surface,
shown is in red, the location of the contact is marked by the red X, and the
force distribution depicted by the red circle. The sensing elements overlapped
by the force distribution will register the impact. Thus the approximate
location of the impact can be found by calculating the centroid of responding
sensing elements.

from each element must be categorized as originating from
one of the two impacts.

Fig. 4. Illustration of the overlapping impacts. The two impacts, here shown
in red, produce two overlapping force distributions. The sensing elements
marked by a green X would register a pressure that is the combination of the
two impacts.

This problem could be viewed as a data partitioning prob-
lem, where each sensing element is a data point in two
dimensional space; thus applying K-means, the sensor readings
are partitioned, and an impact location is estimated for each
partition.

One modification to the K-means was the calculation for
the centroids in the partition update phase; the centroid for
this application was calculated as a weighted centroid
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where the scaling factor, wj , was related to the pressure value
registered by the sensing element. This emphasized that the
location of the centroid was determined by both the pressure
reading at the sensing element and the element’s location; if
element A registered a larger reading than B, C, and D, then
it is reasonable to assume that the impact location would be
closer to element A.

V. CONTACT MODELING

While the weighted centroid calculation based upon K-
means partitioning of the sensor responses provides the esti-
mated location of the impacts, the magnitude of the impact
force is calculated through inverse modeling of the force
distribution. The model is created based on the concept of the
impact force radiating outward from the point of contact with
an ever decreasing magnitude, and is intended for modeling a
point contact only.

As seen in Fig. 5, the model used for representing the force
distribution of an impact was a cone. The volume of the cone,
V , represents the total amount of force applied on the surface;
the slope of the surface of the cone, S, gives the approximation
of the decrease in the measured value as the distance from a
sensing element to the point of impact increased. The radius
of the base of the cone, R, given by

R (S) = 3

s
3V

� |S| (5)

demonstrates that the propagation distance is inversely related
to the rate of drop-off in the force measured.

The height of the cone, H , also a function of S

H (S) = 3

s
3V

� |S| |S| (6)

or
H (S) = R |S| (7)

represents the pressure value which would be measured at the
center of the cone. In a continuous representation, the height
of the cone can also be expressed as

H =
dV

dA
(8)

where A is the area of the base of the cone. Because the
volume of the cone is the total force applied on the surface,
the first order derivative of the force over the area of the base
would be an approximate representation of pressure.

For any point along the base of the cone, the pressure value
is given by

p (X) = S ⇥ ⌅X�C⌅+H (9)

where X is a position along the base of the cone, C is the
point of contact and ⌅X�C⌅ is the distance from point X
to the impact location (Fig. 5); this distance value depends on
the result of K-means partitioning. Equation (9) provides the
forward model for relating an impact force and location to the
pressure value being registered by a sensing element anywhere
on the sensor matrix.



Fig. 5. A visualization of the contact model used for the forward modeling.
Modeled as a cone, its volume is the total magnitude of force exerted by the
contact on the surface. The slope, S, is the rate of decrease in magnitude as the
force propagates outward. This demonstrates the forward modeling process.
Given position X, the force measured at this position is the perpendicular
distance from base at X to side of the cone.

Given (9), the inverse model would be

H = p (X)� S ⇥ ⌅X�C⌅ (10)

Once H is calculated, combined with (5) and (6), the force of
the impact can be estimated relative to the sensor reading at
one sensing element.

The cone representation for modeling the effect of an impact
on the sensor surface offers a simplistic approximation of the
behavior of the compliance layer under stress.

Fig. 6. Plot of the Finite Element Analysis simulation for a point contact on
an elastic material, Kapton. The data shown is the force measured plotted
against the distance between where the measurement was taken and the
location of the contact

Fig. 6 plots the Finite Element Analysis result of an elastic
material under a point load in two dimensions; the data plotted
was the force measured versus the distance between where the
measurement was taken and the impact location. The function
shows a nonlinear decrease in the force measured compared
to the increase in distance between the measurement point and
the contact point. However, the goal of the model was not to
provide an exact replica of elastic deformation and behavior,
but to create a simple algebraic method of generating data for
algorithm testing.

VI. EXPERIMENT SETUP

The algorithm was analyzed for its accuracy in localization
of impact, and the impact force resolution. The algorithm’s
performance was measured while varying the following pa-
rameters: sensor matrix density, impact force magnitude, and
drop-off rate in force measurement (S in Fig. 5).

Sensor matrix density defined the number of sensing el-
ements in the matrix. This was controlled by the spacing
between each element; wider spacing makes for sparser matrix,
and vice-versa.

Both the impact force magnitude and the drop-off rate
directly varies the impact modeling. These two parameters
control the distribution of force over the sensor surface, and
force values registered by the sensing elements.

Verification was conducted in a simulated environment,
where the simulation consisted of two portions: the compliance
layer model, and the sensor model. The compliance layer
model used the impact model described earlier to simulate the
top compliance layer covering the sensor matrix; the sensor
model simulated the sensor matrix made up of piezoresistive
pressure sensors.

VII. RESULTS

The localization of impacts on the sensor surface depends
primarily on the accuracy of the K-means partitioning pro-
cedure. During the procedure, the location of an impact is
estimated as the centroid of a partition; this produces a result
similar to that of triangulation. Thus a major contributing
factor to the accuracy of the localization is the percentage of
sensing elements registering the impacts (i.e. the triangulation
improves when more sensors are seeing an impact event).
Thus one would expect from the results that situations where
the force of impact was widely distributed over the sensor
surface would produce higher accuracy. Of all the parameters
tested, each parameter directly affected the number of available
sensors for analysis.

A. Effect of Sensor Grid Density

By increasing the distance between sensing elements, the
total number of available sensors decreased, and accuracy was
reduced as shown in Fig. 7 and Fig. 8.

One of the major effects of decreasing density was the
introduction of a null zone in the input range. Based on
equation (5), the maximum force propagation distance has a
direct relationship with the magnitude of the impact force; for
the impact to be registered, the force propagation of the impact
must reach at least one sensing element.

Relating to sensor grid density, the minimum impact force
propagation distance must be at least half that of the distance
between two adjacent sensing elements; any less and the
impact may not be registered. Thus for a fixed drop-off rate
in force measurement, the input null zone is an impact force
magnitude value from zero to the magnitude needed to reach
the minimum required propagation range.



Fig. 7. Change in impact force estimation error as the sensor matrix density
decreased. The line shows the mean values for each set of data.

Fig. 8. Degradation in impact localization versus the decrease in sensor
matrix density.

B. Effect of Model Variations

The impact force magnitude parameter has a more direct
correlation to the force propagation distance. Fig. 9 and Fig.
10 demonstrated this clearly as the accuracy increased as a
direct result of the increase in force.

The same could be observed in the error response when the
drop-off rate in measured force was varied; the increase in
drop-off rate decreased the force propagation distance, which
increased the input null zone and reduced the accuracy (see
Fig. 11, 12).

Fig. 9. Increase in accuracy of the estimated impact force as the input impact
force was increased.

Fig. 10. Increase in impact localization accuracy as the input impact force
was increased.

One side-effect of the slow drop-off rate was sensor satu-
ration. With a slow drop-off rate, the propagation distance for
a large impact force magnitude was considerably large, much
larger than the sensor matrix dimensions.

Variance of the measurement readings throughout the sensor
matrix was small. This does not affect the impact force
magnitude estimation, but hampers the impact localization;
because the modified K-means partition depends on the sens-
ing element responses to calculate the weighted centroid, a
situation where all the elements are giving relatively similar
results would move the centroid to the center of the sensor



Fig. 11. Increase in drop-off rate increased the impact force estimation error
as the force propagation distance decreased.

Fig. 12. Increase in drop-off rate increased the impact localization error as
the force propagation distance decreased.

matrix regardless of where the impact was applied.
Shown in Fig. 13, for the slower drop-off rate, the increase

in input force magnitude actually increased the localization er-
ror. Thus for optimal behavior, the property of the compliance
layer which control the drop-off rate must be calibrated for
a particular application in order to avoid sensor saturation at
higher input force ranges.

VIII. CONCLUSION

In this paper we presented an algorithm for analyzing data
from tactile sensor arrays. Based on K-means data partitioning,

Fig. 13. The plot gives the effect of both the impact force magnitude and
the drop-off rate on the force localization error. The feature which become
apparent in this plot was the effect of sensor saturation. At the higher impact
force range (15 25 N), the localization error increased as the drop-off rate
was slowed.

the procedure estimates impact magnitude and locations on the
sensor surface using a simplified contact model; this linear
model provides an approximation for the stress model seen in
the compliance layer during loading.

Through simulation, we determined that the driving factor
behind the accuracy of the algorithm was the sensor matrix
density, or the number of sensing elements which can register
the impact on the sensor surface. Calibrations such as adjusting
the sensor count, and the elastic properties of the compliance
layer to fit a particular application would be needed so as
obtain the optimal performance from the algorithm.
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